p(a(x0), p(a(a(a(x1))), x2)) → p(a(x2), p(a(a(b(x0))), x2))
↳ QTRS
↳ DependencyPairsProof
p(a(x0), p(a(a(a(x1))), x2)) → p(a(x2), p(a(a(b(x0))), x2))
P(a(x0), p(a(a(a(x1))), x2)) → P(a(a(b(x0))), x2)
P(a(x0), p(a(a(a(x1))), x2)) → P(a(x2), p(a(a(b(x0))), x2))
p(a(x0), p(a(a(a(x1))), x2)) → p(a(x2), p(a(a(b(x0))), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
P(a(x0), p(a(a(a(x1))), x2)) → P(a(a(b(x0))), x2)
P(a(x0), p(a(a(a(x1))), x2)) → P(a(x2), p(a(a(b(x0))), x2))
p(a(x0), p(a(a(a(x1))), x2)) → p(a(x2), p(a(a(b(x0))), x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P(a(x0), p(a(a(a(x1))), x2)) → P(a(a(b(x0))), x2)
Used ordering: Polynomial interpretation [25]:
P(a(x0), p(a(a(a(x1))), x2)) → P(a(x2), p(a(a(b(x0))), x2))
POL(P(x1, x2)) = x2
POL(a(x1)) = 0
POL(b(x1)) = 0
POL(p(x1, x2)) = 1 + x2
p(a(x0), p(a(a(a(x1))), x2)) → p(a(x2), p(a(a(b(x0))), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
P(a(x0), p(a(a(a(x1))), x2)) → P(a(x2), p(a(a(b(x0))), x2))
p(a(x0), p(a(a(a(x1))), x2)) → p(a(x2), p(a(a(b(x0))), x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P(a(x0), p(a(a(a(x1))), x2)) → P(a(x2), p(a(a(b(x0))), x2))
P2 > [a1, p2, b]
P2: [2,1]
a1: multiset
b: multiset
p2: multiset
p(a(x0), p(a(a(a(x1))), x2)) → p(a(x2), p(a(a(b(x0))), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
p(a(x0), p(a(a(a(x1))), x2)) → p(a(x2), p(a(a(b(x0))), x2))